121 research outputs found

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Universality of Parametric Spectral Correlations: Local versus Extended Perturbing Potentials

    Full text link
    We explore the influence of an arbitrary external potential perturbation V on the spectral properties of a weakly disordered conductor. In the framework of a statistical field theory of a nonlinear sigma-model type we find, depending on the range and the profile of the external perturbation, two qualitatively different universal regimes of parametric spectral statistics (i.e. cross-correlations between the spectra of Hamiltonians H and H+V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key indicator of universality, and find the connection between the coordinate system in this space which makes the translational invariance manifest, and the physically measurable properties of the system. In particular, in the case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering off the perturbing potential V. They also have a purely statistical interpretation in terms of the moments of the level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic structures.Comment: 16 pages, 7 eps figures (minor changes and reference [17] added

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    A Spectral Bernstein Theorem

    Full text link
    We study the spectrum of the Laplace operator of a complete minimal properly immersed hypersurface MM in Rn+1\R^{n+1}. (1) Under a volume growth condition on extrinsic balls and a condition on the unit normal at infinity, we prove that MM has only essential spectrum consisting of the half line [0,+)[0, +\infty). This is the case when limr~+r~κi=0\lim_{\tilde{r}\to +\infty}\tilde{r}\kappa_i=0, where r~\tilde{r} is the extrinsic distance to a point of MM and κi\kappa_i are the principal curvatures. (2) If the κi\kappa_i satisfy the decay conditions κi1/r~|\kappa_i|\leq 1/\tilde{r}, and strict inequality is achieved at some point yMy\in M, then there are no eigenvalues. We apply these results to minimal graphic and multigraphic hypersurfaces.Comment: 16 pages. v2. Final version: minor revisions, we add Proposition 3.2. Accepted for publication in the Annali di Matematica Pura ed Applicata, on the 05/03/201

    Universal Predictions for Statistical Nuclear Correlations

    Full text link
    We explore the behavior of collective nuclear excitations under a multi-parameter deformation of the Hamiltonian. The Hamiltonian matrix elements have the form P(Hij)1/Hijexp(Hij/V)P(|H_{ij}|)\propto 1/\sqrt{|H_{ij}|}\exp(-|H_{ij}|/V), with a parametric correlation of the type logH(x)H(y)xy\log \langle H(x)H(y)\rangle\propto -|x-y|. The studies are done in both the regular and chaotic regimes of the Hamiltonian. Model independent predictions for a wide variety of correlation functions and distributions which depend on wavefunctions and energies are found from parametric random matrix theory and are compared to the nuclear excitations. We find that our universal predictions are observed in the nuclear states. Being a multi-parameter theory, we consider general paths in parameter space and find that universality can be effected by the topology of the parameter space. Specifically, Berry's phase can modify short distance correlations, breaking certain universal predictions.Comment: Latex file + 12 postscript figure

    Quantum correction to the Kubo formula in closed mesoscopic systems

    Full text link
    We study the energy dissipation rate in a mesoscopic system described by the parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel transitions leading to energy pumping, and also smears the discrete spectrum of the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the mean level spacing and the dissipation rate is given by the Kubo formula. We calculate the quantum correction to the Kubo result that reveals the original discreteness of the energy spectrum. The first correction to the system viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX

    DNA from Nails for Genetic Analyses in Large-Scale Epidemiologic Studies

    Get PDF
    BACKGROUND: Nails contain genomic DNA that can be used for genetic analyses, which is attractive for large epidemiologic studies that have collected or are planning to collect nail clippings. Study participants will more readily participate in a study when asked to provide nail samples than when asked to provide a blood sample. In addition, nails are easy and cheap to obtain and store compared with other tissues. METHODS: We describe our findings on toenail DNA in terms of yield, quality, genotyping a limited set of SNPs with the Sequenom MassARRAY iPLEX platform and high-density genotyping with the Illumina HumanCytoSNP_FFPE-12 DNA array (>262,000 markers). We discuss our findings together with other studies on nail DNA and we compare nails and other frequently used tissue samples as DNA sources. RESULTS: Although nail DNA is considerably degraded, genotyping a limited set of SNPs with the Sequenom MassARRAY iPLEX platform (average sample call rate, 97.1%) and high-density genotyping with the Illumina HumanCytoSNP_FFPE chip (average sample call rate, 93.8%) were successful. CONCLUSIONS: Nails are a suitable source of DNA for genotyping in large-scale epidemiologic studies, provided that methods are used that are suitable or optimized for degraded DNA. For genotyping through (next generation) sequencing where DNA degradation is less of an issue, nails may be an even more attractive DNA source, because it surpasses other sources in terms of ease and costs of obtaining and storing the samples. IMPACT: It is worthwhile to consider nails as a source of DNA for genotyping in large-scale epidemiologic studies. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." Cancer Epidemiol Biomarkers Prev; 23(12); 2703-12. (c)2014 AACR

    Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fermions

    Full text link
    Based on the chiral symmetry breaking pattern and the corresponding low-energy effective lagrangian, we determine the fermion mass dependence of the partition function and derive sum rules for eigenvalues of the QCD Dirac operator in finite Euclidean volume. Results are given for Nc=2N_c = 2 and for Yang-Mills theory coupled to several light adjoint Majorana fermions. They coincide with those derived earlier in the framework of random matrix theory.Comment: 22p., SUNY-NTG-94/18, TPI-MINN-94/10-

    Phase coherence phenomena in superconducting films

    Full text link
    Superconducting films subject to an in-plane magnetic field exhibit a gapless superconducting phase. We explore the quasi-particle spectral properties of the gapless phase and comment on the transport properties. Of particular interest is the sensitivity of the quantum interference phenomena in this phase to the nature of the impurity scattering. We find that films subject to columnar defects exhibit a `Berry-Robnik' symmetry which changes the fundamental properties of the system. Furthermore, we explore the integrity of the gapped phase. As in the magnetic impurity system, we show that optimal fluctuations of the random impurity potential conspire with the in-plane magnetic field to induce a band of localized sub-gap states. Finally, we investigate the interplay of the proximity effect and gapless superconductivity in thin normal metal-superconductor bi-layers.Comment: 13 pages, 8 figures include
    corecore